Image retrieval: TRECVid - video evaluation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRECVID: The Utility of a Content-based Video Retrieval Evaluation

TRECVID, an annual retrieval evaluation benchmark organized by NIST, encourages research in information retrieval from digital video. TRECVID benchmarking covers both interactive and manual searching by end users, as well as the benchmarking of some supporting technologies including shot boundary detection, extraction of semantic features, and the automatic segmentation of TV news broadcasts. E...

متن کامل

KB Video Retrieval at TRECVID 2010

This paper describes KB Video Retrieval's participation in the TREC Video Retrieval Evaluation for 2010. This year we submitted results for the Semantic Indexing, Known-item Search, Instance Search, and Event Detection in Internet Multimedia tasks. Our goal this year was to evaluate ranking strategies and expand our knowledge based approach to a variety of data sets and tasks.

متن کامل

IBM Research TRECVID-2007 Video Retrieval System

In this paper, we describe the IBM Research system for indexing, analysis, and retrieval of video as applied to the TREC-2007 video retrieval benchmark. This year, focus of the system improvement was on cross-domain learning, automation, scalability, and interactive search. Keywords—Multimedia indexing, content-based retrieval, Support Vector Machines, Model Vectors, Model-

متن کامل

BJTU TRECVID 2006 Video Retrieval System

In this paper, we describe our experiments of search task for TRECVID 2006. This year we participated in the automatic video search subtask and the interactive video search subtask, and submitted two runs to NIST, one for the automatic search (runid: F_A_1_JTU_FA_1_1), one for the interactive search(runid: I_B_2_JTU_I_1_1 ). The paper presents the approaches as well as the results analysis in d...

متن کامل

FudaSys Video Retrieval in TRECVID 2012

The video retrieval system we developed for TRECVID 2012 mainly involves the semantic indexing task which includes key frame extraction, low level feature extraction, classification and concept fusion. We extracted a new low level feature, explored various classification and fusion schemes. Four “light” runs and two 2 “pair” runs we submitted are as follows: L_A_FudaSys1: Fusion based on concep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Society for Information Science and Technology

سال: 2008

ISSN: 0095-4403

DOI: 10.1002/bult.2007.bult1720330312